Note

Click here to download the full example code

# Compute LCMV beamformer on evoked data¶

Compute LCMV beamformer on an evoked dataset for three different choices of source orientation and store the solutions in stc files for visualization.

```
# Author: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
#
# License: BSD (3-clause)
# sphinx_gallery_thumbnail_number = 3
import matplotlib.pyplot as plt
import numpy as np
import mne
from mne.datasets import sample
from mne.beamformer import make_lcmv, apply_lcmv
print(__doc__)
data_path = sample.data_path()
raw_fname = data_path + '/MEG/sample/sample_audvis_raw.fif'
event_fname = data_path + '/MEG/sample/sample_audvis_raw-eve.fif'
fname_fwd = data_path + '/MEG/sample/sample_audvis-meg-eeg-oct-6-fwd.fif'
label_name = 'Aud-lh'
fname_label = data_path + '/MEG/sample/labels/%s.label' % label_name
subjects_dir = data_path + '/subjects'
```

Out:

```
```

Get epochs

```
event_id, tmin, tmax = 1, -0.2, 0.5
# Setup for reading the raw data
raw = mne.io.read_raw_fif(raw_fname, preload=True)
raw.info['bads'] = ['MEG 2443', 'EEG 053'] # 2 bads channels
events = mne.read_events(event_fname)
# Set up pick list: EEG + MEG - bad channels (modify to your needs)
picks = mne.pick_types(raw.info, meg=True, eeg=False, stim=True, eog=True,
exclude='bads')
# Pick the channels of interest
raw.pick_channels([raw.ch_names[pick] for pick in picks])
# Re-normalize our empty-room projectors, so they are fine after subselection
raw.info.normalize_proj()
# Read epochs
epochs = mne.Epochs(raw, events, event_id, tmin, tmax,
baseline=(None, 0), preload=True, proj=True,
reject=dict(grad=4000e-13, mag=4e-12, eog=150e-6))
evoked = epochs.average()
forward = mne.read_forward_solution(fname_fwd)
forward = mne.convert_forward_solution(forward, surf_ori=True)
# Compute regularized noise and data covariances
noise_cov = mne.compute_covariance(epochs, tmin=tmin, tmax=0, method='shrunk',
rank=None)
data_cov = mne.compute_covariance(epochs, tmin=0.04, tmax=0.15,
method='shrunk', rank=None)
evoked.plot(time_unit='s')
```

Out:

```
Opening raw data file /home/circleci/mne_data/MNE-sample-data/MEG/sample/sample_audvis_raw.fif...
Read a total of 3 projection items:
PCA-v1 (1 x 102) idle
PCA-v2 (1 x 102) idle
PCA-v3 (1 x 102) idle
Range : 25800 ... 192599 = 42.956 ... 320.670 secs
Ready.
Current compensation grade : 0
Reading 0 ... 166799 = 0.000 ... 277.714 secs...
72 matching events found
Applying baseline correction (mode: mean)
Not setting metadata
Created an SSP operator (subspace dimension = 3)
3 projection items activated
Loading data for 72 events and 421 original time points ...
Rejecting epoch based on EOG : ['EOG 061']
Rejecting epoch based on EOG : ['EOG 061']
Rejecting epoch based on EOG : ['EOG 061']
Rejecting epoch based on EOG : ['EOG 061']
Rejecting epoch based on EOG : ['EOG 061']
Rejecting epoch based on MAG : ['MEG 1711']
Rejecting epoch based on EOG : ['EOG 061']
Rejecting epoch based on EOG : ['EOG 061']
Rejecting epoch based on EOG : ['EOG 061']
Rejecting epoch based on EOG : ['EOG 061']
Rejecting epoch based on EOG : ['EOG 061']
Rejecting epoch based on EOG : ['EOG 061']
Rejecting epoch based on EOG : ['EOG 061']
Rejecting epoch based on EOG : ['EOG 061']
Rejecting epoch based on EOG : ['EOG 061']
Rejecting epoch based on EOG : ['EOG 061']
Rejecting epoch based on EOG : ['EOG 061']
17 bad epochs dropped
Reading forward solution from /home/circleci/mne_data/MNE-sample-data/MEG/sample/sample_audvis-meg-eeg-oct-6-fwd.fif...
Reading a source space...
Computing patch statistics...
Patch information added...
Distance information added...
[done]
Reading a source space...
Computing patch statistics...
Patch information added...
Distance information added...
[done]
2 source spaces read
Desired named matrix (kind = 3523) not available
Read MEG forward solution (7498 sources, 306 channels, free orientations)
Desired named matrix (kind = 3523) not available
Read EEG forward solution (7498 sources, 60 channels, free orientations)
MEG and EEG forward solutions combined
Source spaces transformed to the forward solution coordinate frame
Average patch normals will be employed in the rotation to the local surface coordinates....
Converting to surface-based source orientations...
[done]
Computing data rank from raw with rank=None
Using tolerance 5.6e-09 (2.2e-16 eps * 305 dim * 8.3e+04 max singular value)
Estimated rank (mag + grad): 302
MEG: rank 302 computed from 305 data channels with 3 projectors
Created an SSP operator (subspace dimension = 3)
Setting small MEG eigenvalues to zero (without PCA)
Reducing data rank from 305 -> 302
Estimating covariance using SHRUNK
Done.
Number of samples used : 6655
[done]
Computing data rank from raw with rank=None
Using tolerance 5.9e-09 (2.2e-16 eps * 305 dim * 8.8e+04 max singular value)
Estimated rank (mag + grad): 302
MEG: rank 302 computed from 305 data channels with 3 projectors
Created an SSP operator (subspace dimension = 3)
Setting small MEG eigenvalues to zero (without PCA)
Reducing data rank from 305 -> 302
Estimating covariance using SHRUNK
Done.
Number of samples used : 3685
[done]
```

Run beamformers and look at maximum outputs

```
pick_oris = [None, 'normal', 'max-power', None]
descriptions = ['Free', 'Normal', 'Max-power', 'Fixed']
fig, ax = plt.subplots(1)
max_voxs = list()
colors = list()
for pick_ori, desc in zip(pick_oris, descriptions):
# compute unit-noise-gain beamformer with whitening of the leadfield and
# data (enabled by passing a noise covariance matrix)
if desc == 'Fixed':
use_forward = mne.convert_forward_solution(forward, force_fixed=True)
else:
use_forward = forward
filters = make_lcmv(evoked.info, use_forward, data_cov, reg=0.05,
noise_cov=noise_cov, pick_ori=pick_ori,
weight_norm='unit-noise-gain', rank=None)
print(filters)
# apply this spatial filter to source-reconstruct the evoked data
stc = apply_lcmv(evoked, filters, max_ori_out='signed')
# View activation time-series in maximum voxel at 100 ms:
time_idx = stc.time_as_index(0.1)
max_idx = np.argmax(np.abs(stc.data[:, time_idx]))
# we know these are all left hemi, so we can just use vertices[0]
max_voxs.append(stc.vertices[0][max_idx])
h = ax.plot(stc.times, stc.data[max_idx, :],
label='%s, voxel: %i' % (desc, max_idx))[0]
colors.append(h.get_color())
if pick_ori == 'max-power':
max_stc = stc
ax.axhline(0, color='k')
ax.set(xlabel='Time (ms)', ylabel='LCMV value',
title='LCMV in maximum voxel')
ax.legend(loc='lower right')
mne.viz.utils.plt_show()
```

Out:

```
Computing data rank from covariance with rank=None
Using tolerance 1.1e-12 (2.2e-16 eps * 305 dim * 17 max singular value)
Estimated rank (mag + grad): 302
MEG: rank 302 computed from 305 data channels with 3 projectors
Computing data rank from covariance with rank=None
Using tolerance 3.2e-13 (2.2e-16 eps * 305 dim * 4.7 max singular value)
Estimated rank (mag + grad): 302
MEG: rank 302 computed from 305 data channels with 3 projectors
Making LCMV beamformer with rank {'meg': 302}
Computing inverse operator with 305 channels.
305 out of 366 channels remain after picking
Selected 305 channels
Whitening the forward solution.
Created an SSP operator (subspace dimension = 3)
Computing data rank from covariance with rank={'meg': 302}
Setting small MEG eigenvalues to zero (without PCA)
Creating the source covariance matrix
Adjusting source covariance matrix.
<Beamformer | LCMV, subject "sample", 7498 vert, 305 ch, unit-noise-gain norm, rank 302>
combining the current components...
Computing data rank from covariance with rank=None
Using tolerance 1.1e-12 (2.2e-16 eps * 305 dim * 17 max singular value)
Estimated rank (mag + grad): 302
MEG: rank 302 computed from 305 data channels with 3 projectors
Computing data rank from covariance with rank=None
Using tolerance 3.2e-13 (2.2e-16 eps * 305 dim * 4.7 max singular value)
Estimated rank (mag + grad): 302
MEG: rank 302 computed from 305 data channels with 3 projectors
Making LCMV beamformer with rank {'meg': 302}
Computing inverse operator with 305 channels.
305 out of 366 channels remain after picking
Selected 305 channels
Whitening the forward solution.
Created an SSP operator (subspace dimension = 3)
Computing data rank from covariance with rank={'meg': 302}
Setting small MEG eigenvalues to zero (without PCA)
Creating the source covariance matrix
Adjusting source covariance matrix.
<Beamformer | LCMV, subject "sample", 7498 vert, 305 ch, normal ori, unit-noise-gain norm, rank 302>
Computing data rank from covariance with rank=None
Using tolerance 1.1e-12 (2.2e-16 eps * 305 dim * 17 max singular value)
Estimated rank (mag + grad): 302
MEG: rank 302 computed from 305 data channels with 3 projectors
Computing data rank from covariance with rank=None
Using tolerance 3.2e-13 (2.2e-16 eps * 305 dim * 4.7 max singular value)
Estimated rank (mag + grad): 302
MEG: rank 302 computed from 305 data channels with 3 projectors
Making LCMV beamformer with rank {'meg': 302}
Computing inverse operator with 305 channels.
305 out of 366 channels remain after picking
Selected 305 channels
Whitening the forward solution.
Created an SSP operator (subspace dimension = 3)
Computing data rank from covariance with rank={'meg': 302}
Setting small MEG eigenvalues to zero (without PCA)
Creating the source covariance matrix
Adjusting source covariance matrix.
<Beamformer | LCMV, subject "sample", 7498 vert, 305 ch, max-power ori, unit-noise-gain norm, rank 302>
Average patch normals will be employed in the rotation to the local surface coordinates....
Converting to surface-based source orientations...
[done]
Computing data rank from covariance with rank=None
Using tolerance 1.1e-12 (2.2e-16 eps * 305 dim * 17 max singular value)
Estimated rank (mag + grad): 302
MEG: rank 302 computed from 305 data channels with 3 projectors
Computing data rank from covariance with rank=None
Using tolerance 3.2e-13 (2.2e-16 eps * 305 dim * 4.7 max singular value)
Estimated rank (mag + grad): 302
MEG: rank 302 computed from 305 data channels with 3 projectors
Making LCMV beamformer with rank {'meg': 302}
Computing inverse operator with 305 channels.
305 out of 366 channels remain after picking
Selected 305 channels
Whitening the forward solution.
Created an SSP operator (subspace dimension = 3)
Computing data rank from covariance with rank={'meg': 302}
Setting small MEG eigenvalues to zero (without PCA)
Creating the source covariance matrix
Adjusting source covariance matrix.
<Beamformer | LCMV, subject "sample", 7498 vert, 305 ch, unit-noise-gain norm, rank 302>
```

We can also look at the spatial distribution

```
# Plot last stc in the brain in 3D with PySurfer if available
brain = max_stc.plot(hemi='lh', views='lat', subjects_dir=subjects_dir,
initial_time=0.1, time_unit='s', smoothing_steps=5)
for color, vertex in zip(colors, max_voxs):
brain.add_foci([vertex], coords_as_verts=True, scale_factor=0.5,
hemi='lh', color=color)
```

Out:

```
Using control points [0.51097298 0.57233033 0.97702958]
```

**Total running time of the script:** ( 0 minutes 24.142 seconds)

**Estimated memory usage:** 769 MB