Note

Click here to download the full example code

Tests for differential evoked responses in at least one condition using a permutation clustering test. The FieldTrip neighbor templates will be used to determine the adjacency between sensors. This serves as a spatial prior to the clustering. Spatiotemporal clusters will then be visualized using custom matplotlib code.

Caveat for the interpretation of “significant” clusters: see the FieldTrip website.

```
# Authors: Denis Engemann <denis.engemann@gmail.com>
# Jona Sassenhagen <jona.sassenhagen@gmail.com>
#
# License: BSD (3-clause)
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import make_axes_locatable
from mne.viz import plot_topomap
import mne
from mne.stats import spatio_temporal_cluster_test
from mne.datasets import sample
from mne.channels import find_ch_connectivity
from mne.viz import plot_compare_evokeds
print(__doc__)
```

```
data_path = sample.data_path()
raw_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw.fif'
event_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw-eve.fif'
event_id = {'Aud/L': 1, 'Aud/R': 2, 'Vis/L': 3, 'Vis/R': 4}
tmin = -0.2
tmax = 0.5
# Setup for reading the raw data
raw = mne.io.read_raw_fif(raw_fname, preload=True)
raw.filter(1, 30, fir_design='firwin')
events = mne.read_events(event_fname)
```

Out:

```
Opening raw data file /home/circleci/mne_data/MNE-sample-data/MEG/sample/sample_audvis_filt-0-40_raw.fif...
Read a total of 4 projection items:
PCA-v1 (1 x 102) idle
PCA-v2 (1 x 102) idle
PCA-v3 (1 x 102) idle
Average EEG reference (1 x 60) idle
Range : 6450 ... 48149 = 42.956 ... 320.665 secs
Ready.
Current compensation grade : 0
Reading 0 ... 41699 = 0.000 ... 277.709 secs...
Setting up band-pass filter from 1 - 30 Hz
l_trans_bandwidth chosen to be 1.0 Hz
h_trans_bandwidth chosen to be 7.5 Hz
Filter length of 497 samples (3.310 sec) selected
```

```
picks = mne.pick_types(raw.info, meg='mag', eog=True)
reject = dict(mag=4e-12, eog=150e-6)
epochs = mne.Epochs(raw, events, event_id, tmin, tmax, picks=picks,
baseline=None, reject=reject, preload=True)
epochs.drop_channels(['EOG 061'])
epochs.equalize_event_counts(event_id)
X = [epochs[k].get_data() for k in event_id] # as 3D matrix
X = [np.transpose(x, (0, 2, 1)) for x in X] # transpose for clustering
```

Out:

```
288 matching events found
No baseline correction applied
Not setting metadata
Created an SSP operator (subspace dimension = 3)
4 projection items activated
Loading data for 288 events and 106 original time points ...
Rejecting epoch based on EOG : ['EOG 061']
Rejecting epoch based on EOG : ['EOG 061']
Rejecting epoch based on EOG : ['EOG 061']
Rejecting epoch based on EOG : ['EOG 061']
Rejecting epoch based on EOG : ['EOG 061']
Rejecting epoch based on EOG : ['EOG 061']
Rejecting epoch based on EOG : ['EOG 061']
Rejecting epoch based on EOG : ['EOG 061']
Rejecting epoch based on EOG : ['EOG 061']
Rejecting epoch based on EOG : ['EOG 061']
Rejecting epoch based on EOG : ['EOG 061']
Rejecting epoch based on EOG : ['EOG 061']
Rejecting epoch based on EOG : ['EOG 061']
Rejecting epoch based on EOG : ['EOG 061']
Rejecting epoch based on EOG : ['EOG 061']
Rejecting epoch based on MAG : ['MEG 1711']
Rejecting epoch based on EOG : ['EOG 061']
Rejecting epoch based on EOG : ['EOG 061']
Rejecting epoch based on EOG : ['EOG 061']
Rejecting epoch based on EOG : ['EOG 061']
Rejecting epoch based on EOG : ['EOG 061']
Rejecting epoch based on MAG : ['MEG 1711']
Rejecting epoch based on EOG : ['EOG 061']
Rejecting epoch based on EOG : ['EOG 061']
Rejecting epoch based on EOG : ['EOG 061']
Rejecting epoch based on EOG : ['EOG 061']
Rejecting epoch based on EOG : ['EOG 061']
Rejecting epoch based on EOG : ['EOG 061']
Rejecting epoch based on EOG : ['EOG 061']
Rejecting epoch based on EOG : ['EOG 061']
Rejecting epoch based on EOG : ['EOG 061']
Rejecting epoch based on EOG : ['EOG 061']
Rejecting epoch based on EOG : ['EOG 061']
Rejecting epoch based on EOG : ['EOG 061']
Rejecting epoch based on EOG : ['EOG 061']
Rejecting epoch based on EOG : ['EOG 061']
Rejecting epoch based on EOG : ['EOG 061']
Rejecting epoch based on EOG : ['EOG 061']
Rejecting epoch based on EOG : ['EOG 061']
Rejecting epoch based on EOG : ['EOG 061']
Rejecting epoch based on EOG : ['EOG 061']
Rejecting epoch based on EOG : ['EOG 061']
Rejecting epoch based on EOG : ['EOG 061']
Rejecting epoch based on EOG : ['EOG 061']
Rejecting epoch based on EOG : ['EOG 061']
Rejecting epoch based on EOG : ['EOG 061']
Rejecting epoch based on EOG : ['EOG 061']
Rejecting epoch based on EOG : ['EOG 061']
Rejecting epoch based on EOG : ['EOG 061']
49 bad epochs dropped
Dropped 19 epochs
```

```
connectivity, ch_names = find_ch_connectivity(epochs.info, ch_type='mag')
print(type(connectivity)) # it's a sparse matrix!
plt.imshow(connectivity.toarray(), cmap='gray', origin='lower',
interpolation='nearest')
plt.xlabel('{} Magnetometers'.format(len(ch_names)))
plt.ylabel('{} Magnetometers'.format(len(ch_names)))
plt.title('Between-sensor adjacency')
```

Out:

```
Reading connectivity matrix for neuromag306mag.
<class 'scipy.sparse.csr.csr_matrix'>
```

How does it work? We use clustering to bind together features which are similar. Our features are the magnetic fields measured over our sensor array at different times. This reduces the multiple comparison problem. To compute the actual test-statistic, we first sum all F-values in all clusters. We end up with one statistic for each cluster. Then we generate a distribution from the data by shuffling our conditions between our samples and recomputing our clusters and the test statistics. We test for the significance of a given cluster by computing the probability of observing a cluster of that size. For more background read: Maris/Oostenveld (2007), “Nonparametric statistical testing of EEG- and MEG-data” Journal of Neuroscience Methods, Vol. 164, No. 1., pp. 177-190. doi:10.1016/j.jneumeth.2007.03.024

```
# set cluster threshold
threshold = 50.0 # very high, but the test is quite sensitive on this data
# set family-wise p-value
p_accept = 0.01
cluster_stats = spatio_temporal_cluster_test(X, n_permutations=1000,
threshold=threshold, tail=1,
n_jobs=1, buffer_size=None,
connectivity=connectivity)
T_obs, clusters, p_values, _ = cluster_stats
good_cluster_inds = np.where(p_values < p_accept)[0]
```

Out:

```
stat_fun(H1): min=0.004107 max=196.094418
Running initial clustering
Found 8 clusters
Permuting 999 times...
Computing cluster p-values
Done.
```

Note. The same functions work with source estimate. The only differences are the origin of the data, the size, and the connectivity definition. It can be used for single trials or for groups of subjects.

```
# configure variables for visualization
colors = {"Aud": "crimson", "Vis": 'steelblue'}
linestyles = {"L": '-', "R": '--'}
# get sensor positions via layout
pos = mne.find_layout(epochs.info).pos
# organize data for plotting
evokeds = {cond: epochs[cond].average() for cond in event_id}
# loop over clusters
for i_clu, clu_idx in enumerate(good_cluster_inds):
# unpack cluster information, get unique indices
time_inds, space_inds = np.squeeze(clusters[clu_idx])
ch_inds = np.unique(space_inds)
time_inds = np.unique(time_inds)
# get topography for F stat
f_map = T_obs[time_inds, ...].mean(axis=0)
# get signals at the sensors contributing to the cluster
sig_times = epochs.times[time_inds]
# create spatial mask
mask = np.zeros((f_map.shape[0], 1), dtype=bool)
mask[ch_inds, :] = True
# initialize figure
fig, ax_topo = plt.subplots(1, 1, figsize=(10, 3))
# plot average test statistic and mark significant sensors
image, _ = plot_topomap(f_map, pos, mask=mask, axes=ax_topo, cmap='Reds',
vmin=np.min, vmax=np.max, show=False)
# create additional axes (for ERF and colorbar)
divider = make_axes_locatable(ax_topo)
# add axes for colorbar
ax_colorbar = divider.append_axes('right', size='5%', pad=0.05)
plt.colorbar(image, cax=ax_colorbar)
ax_topo.set_xlabel(
'Averaged F-map ({:0.3f} - {:0.3f} s)'.format(*sig_times[[0, -1]]))
# add new axis for time courses and plot time courses
ax_signals = divider.append_axes('right', size='300%', pad=1.2)
title = 'Cluster #{0}, {1} sensor'.format(i_clu + 1, len(ch_inds))
if len(ch_inds) > 1:
title += "s (mean)"
plot_compare_evokeds(evokeds, title=title, picks=ch_inds, axes=ax_signals,
colors=colors, linestyles=linestyles, show=False,
split_legend=True, truncate_yaxis='max_ticks')
# plot temporal cluster extent
ymin, ymax = ax_signals.get_ylim()
ax_signals.fill_betweenx((ymin, ymax), sig_times[0], sig_times[-1],
color='orange', alpha=0.3)
# clean up viz
mne.viz.tight_layout(fig=fig)
fig.subplots_adjust(bottom=.05)
plt.show()
```

- What is the smallest p-value you can obtain, given the finite number of permutations?
- use an F distribution to compute the threshold by traditional significance
levels. Hint: take a look at
`scipy.stats.f`

**Total running time of the script:** ( 0 minutes 20.321 seconds)

**Estimated memory usage:** 10 MB