Decoding sensor space data with generalization across time and conditions#

This example runs the analysis described in [1]. It illustrates how one can fit a linear classifier to identify a discriminatory topography at a given time instant and subsequently assess whether this linear model can accurately predict all of the time samples of a second set of conditions.

# Authors: Jean-Remi King <jeanremi.king@gmail.com>
#          Alexandre Gramfort <alexandre.gramfort@inria.fr>
#          Denis Engemann <denis.engemann@gmail.com>
#
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import matplotlib.pyplot as plt
from sklearn.linear_model import LogisticRegression
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler

import mne
from mne.datasets import sample
from mne.decoding import GeneralizingEstimator

print(__doc__)

# Preprocess data
data_path = sample.data_path()
# Load and filter data, set up epochs
meg_path = data_path / "MEG" / "sample"
raw_fname = meg_path / "sample_audvis_filt-0-40_raw.fif"
events_fname = meg_path / "sample_audvis_filt-0-40_raw-eve.fif"
raw = mne.io.read_raw_fif(raw_fname, preload=True)
picks = mne.pick_types(raw.info, meg=True, exclude="bads")  # Pick MEG channels
raw.filter(1.0, 30.0, fir_design="firwin")  # Band pass filtering signals
events = mne.read_events(events_fname)
event_id = {
    "Auditory/Left": 1,
    "Auditory/Right": 2,
    "Visual/Left": 3,
    "Visual/Right": 4,
}
tmin = -0.050
tmax = 0.400
# decimate to make the example faster to run, but then use verbose='error' in
# the Epochs constructor to suppress warning about decimation causing aliasing
decim = 2
epochs = mne.Epochs(
    raw,
    events,
    event_id=event_id,
    tmin=tmin,
    tmax=tmax,
    proj=True,
    picks=picks,
    baseline=None,
    preload=True,
    reject=dict(mag=5e-12),
    decim=decim,
    verbose="error",
)
Opening raw data file /home/circleci/mne_data/MNE-sample-data/MEG/sample/sample_audvis_filt-0-40_raw.fif...
    Read a total of 4 projection items:
        PCA-v1 (1 x 102)  idle
        PCA-v2 (1 x 102)  idle
        PCA-v3 (1 x 102)  idle
        Average EEG reference (1 x 60)  idle
    Range : 6450 ... 48149 =     42.956 ...   320.665 secs
Ready.
Reading 0 ... 41699  =      0.000 ...   277.709 secs...
Filtering raw data in 1 contiguous segment
Setting up band-pass filter from 1 - 30 Hz

FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 1.00
- Lower transition bandwidth: 1.00 Hz (-6 dB cutoff frequency: 0.50 Hz)
- Upper passband edge: 30.00 Hz
- Upper transition bandwidth: 7.50 Hz (-6 dB cutoff frequency: 33.75 Hz)
- Filter length: 497 samples (3.310 s)

[Parallel(n_jobs=1)]: Done  17 tasks      | elapsed:    0.0s
[Parallel(n_jobs=1)]: Done  71 tasks      | elapsed:    0.1s
[Parallel(n_jobs=1)]: Done 161 tasks      | elapsed:    0.3s
[Parallel(n_jobs=1)]: Done 287 tasks      | elapsed:    0.5s

We will train the classifier on all left visual vs auditory trials and test on all right visual vs auditory trials.

clf = make_pipeline(
    StandardScaler(),
    LogisticRegression(solver="liblinear"),  # liblinear is faster than lbfgs
)
time_gen = GeneralizingEstimator(clf, scoring="roc_auc", n_jobs=None, verbose=True)

# Fit classifiers on the epochs where the stimulus was presented to the left.
# Note that the experimental condition y indicates auditory or visual
time_gen.fit(X=epochs["Left"].get_data(copy=False), y=epochs["Left"].events[:, 2] > 2)
  0%|          | Fitting GeneralizingEstimator : 0/35 [00:00<?,       ?it/s]
  3%|▎         | Fitting GeneralizingEstimator : 1/35 [00:00<00:01,   29.20it/s]
  9%|▊         | Fitting GeneralizingEstimator : 3/35 [00:00<00:00,   44.44it/s]
 14%|█▍        | Fitting GeneralizingEstimator : 5/35 [00:00<00:00,   49.58it/s]
 20%|██        | Fitting GeneralizingEstimator : 7/35 [00:00<00:00,   52.14it/s]
 26%|██▌       | Fitting GeneralizingEstimator : 9/35 [00:00<00:00,   53.70it/s]
 34%|███▍      | Fitting GeneralizingEstimator : 12/35 [00:00<00:00,   60.31it/s]
 40%|████      | Fitting GeneralizingEstimator : 14/35 [00:00<00:00,   60.13it/s]
 49%|████▊     | Fitting GeneralizingEstimator : 17/35 [00:00<00:00,   64.39it/s]
 57%|█████▋    | Fitting GeneralizingEstimator : 20/35 [00:00<00:00,   67.69it/s]
 63%|██████▎   | Fitting GeneralizingEstimator : 22/35 [00:00<00:00,   66.62it/s]
 71%|███████▏  | Fitting GeneralizingEstimator : 25/35 [00:00<00:00,   69.20it/s]
 77%|███████▋  | Fitting GeneralizingEstimator : 27/35 [00:00<00:00,   68.11it/s]
 86%|████████▌ | Fitting GeneralizingEstimator : 30/35 [00:00<00:00,   70.22it/s]
 91%|█████████▏| Fitting GeneralizingEstimator : 32/35 [00:00<00:00,   69.15it/s]
100%|██████████| Fitting GeneralizingEstimator : 35/35 [00:00<00:00,   72.09it/s]
100%|██████████| Fitting GeneralizingEstimator : 35/35 [00:00<00:00,   69.69it/s]

Score on the epochs where the stimulus was presented to the right.

scores = time_gen.score(
    X=epochs["Right"].get_data(copy=False), y=epochs["Right"].events[:, 2] > 2
)
  0%|          | Scoring GeneralizingEstimator : 0/1225 [00:00<?,       ?it/s]
  1%|          | Scoring GeneralizingEstimator : 12/1225 [00:00<00:03,  350.34it/s]
  2%|▏         | Scoring GeneralizingEstimator : 29/1225 [00:00<00:02,  426.18it/s]
  4%|▎         | Scoring GeneralizingEstimator : 44/1225 [00:00<00:02,  429.72it/s]
  5%|▍         | Scoring GeneralizingEstimator : 60/1225 [00:00<00:02,  441.45it/s]
  6%|▌         | Scoring GeneralizingEstimator : 76/1225 [00:00<00:02,  447.17it/s]
  8%|▊         | Scoring GeneralizingEstimator : 92/1225 [00:00<00:02,  451.45it/s]
  9%|▉         | Scoring GeneralizingEstimator : 108/1225 [00:00<00:02,  455.22it/s]
 10%|█         | Scoring GeneralizingEstimator : 124/1225 [00:00<00:02,  456.88it/s]
 11%|█▏        | Scoring GeneralizingEstimator : 140/1225 [00:00<00:02,  459.16it/s]
 13%|█▎        | Scoring GeneralizingEstimator : 156/1225 [00:00<00:02,  460.92it/s]
 14%|█▍        | Scoring GeneralizingEstimator : 173/1225 [00:00<00:02,  465.54it/s]
 16%|█▌        | Scoring GeneralizingEstimator : 190/1225 [00:00<00:02,  466.03it/s]
 17%|█▋        | Scoring GeneralizingEstimator : 207/1225 [00:00<00:02,  469.87it/s]
 18%|█▊        | Scoring GeneralizingEstimator : 224/1225 [00:00<00:02,  472.77it/s]
 20%|█▉        | Scoring GeneralizingEstimator : 241/1225 [00:00<00:02,  474.89it/s]
 21%|██        | Scoring GeneralizingEstimator : 257/1225 [00:00<00:02,  474.68it/s]
 22%|██▏       | Scoring GeneralizingEstimator : 274/1225 [00:00<00:01,  477.17it/s]
 24%|██▎       | Scoring GeneralizingEstimator : 290/1225 [00:00<00:01,  476.82it/s]
 25%|██▌       | Scoring GeneralizingEstimator : 307/1225 [00:00<00:01,  478.66it/s]
 26%|██▋       | Scoring GeneralizingEstimator : 324/1225 [00:00<00:01,  480.59it/s]
 28%|██▊       | Scoring GeneralizingEstimator : 340/1225 [00:00<00:01,  480.12it/s]
 29%|██▉       | Scoring GeneralizingEstimator : 356/1225 [00:00<00:01,  479.70it/s]
 30%|███       | Scoring GeneralizingEstimator : 372/1225 [00:00<00:01,  479.15it/s]
 32%|███▏      | Scoring GeneralizingEstimator : 389/1225 [00:00<00:01,  480.86it/s]
 33%|███▎      | Scoring GeneralizingEstimator : 405/1225 [00:00<00:01,  480.20it/s]
 34%|███▍      | Scoring GeneralizingEstimator : 421/1225 [00:00<00:01,  479.79it/s]
 36%|███▌      | Scoring GeneralizingEstimator : 438/1225 [00:00<00:01,  481.34it/s]
 37%|███▋      | Scoring GeneralizingEstimator : 454/1225 [00:00<00:01,  480.84it/s]
 38%|███▊      | Scoring GeneralizingEstimator : 471/1225 [00:00<00:01,  481.98it/s]
 40%|███▉      | Scoring GeneralizingEstimator : 487/1225 [00:01<00:01,  480.78it/s]
 41%|████      | Scoring GeneralizingEstimator : 503/1225 [00:01<00:01,  479.84it/s]
 42%|████▏     | Scoring GeneralizingEstimator : 520/1225 [00:01<00:01,  481.12it/s]
 44%|████▍     | Scoring GeneralizingEstimator : 537/1225 [00:01<00:01,  482.16it/s]
 45%|████▌     | Scoring GeneralizingEstimator : 554/1225 [00:01<00:01,  483.23it/s]
 47%|████▋     | Scoring GeneralizingEstimator : 570/1225 [00:01<00:01,  482.55it/s]
 48%|████▊     | Scoring GeneralizingEstimator : 587/1225 [00:01<00:01,  483.61it/s]
 49%|████▉     | Scoring GeneralizingEstimator : 604/1225 [00:01<00:01,  484.55it/s]
 51%|█████     | Scoring GeneralizingEstimator : 621/1225 [00:01<00:01,  485.68it/s]
 52%|█████▏    | Scoring GeneralizingEstimator : 637/1225 [00:01<00:01,  484.62it/s]
 53%|█████▎    | Scoring GeneralizingEstimator : 654/1225 [00:01<00:01,  485.45it/s]
 55%|█████▍    | Scoring GeneralizingEstimator : 671/1225 [00:01<00:01,  486.29it/s]
 56%|█████▌    | Scoring GeneralizingEstimator : 688/1225 [00:01<00:01,  487.24it/s]
 58%|█████▊    | Scoring GeneralizingEstimator : 705/1225 [00:01<00:01,  488.02it/s]
 59%|█████▉    | Scoring GeneralizingEstimator : 721/1225 [00:01<00:01,  487.13it/s]
 60%|██████    | Scoring GeneralizingEstimator : 738/1225 [00:01<00:00,  487.98it/s]
 62%|██████▏   | Scoring GeneralizingEstimator : 755/1225 [00:01<00:00,  488.63it/s]
 63%|██████▎   | Scoring GeneralizingEstimator : 771/1225 [00:01<00:00,  487.67it/s]
 64%|██████▍   | Scoring GeneralizingEstimator : 788/1225 [00:01<00:00,  488.41it/s]
 66%|██████▌   | Scoring GeneralizingEstimator : 804/1225 [00:01<00:00,  487.38it/s]
 67%|██████▋   | Scoring GeneralizingEstimator : 821/1225 [00:01<00:00,  488.25it/s]
 68%|██████▊   | Scoring GeneralizingEstimator : 837/1225 [00:01<00:00,  487.16it/s]
 70%|██████▉   | Scoring GeneralizingEstimator : 854/1225 [00:01<00:00,  488.02it/s]
 71%|███████   | Scoring GeneralizingEstimator : 871/1225 [00:01<00:00,  488.72it/s]
 72%|███████▏  | Scoring GeneralizingEstimator : 887/1225 [00:01<00:00,  487.70it/s]
 74%|███████▍  | Scoring GeneralizingEstimator : 904/1225 [00:01<00:00,  488.27it/s]
 75%|███████▍  | Scoring GeneralizingEstimator : 917/1225 [00:01<00:00,  482.80it/s]
 76%|███████▌  | Scoring GeneralizingEstimator : 932/1225 [00:01<00:00,  480.77it/s]
 77%|███████▋  | Scoring GeneralizingEstimator : 948/1225 [00:01<00:00,  480.21it/s]
 79%|███████▊  | Scoring GeneralizingEstimator : 964/1225 [00:02<00:00,  479.89it/s]
 80%|████████  | Scoring GeneralizingEstimator : 980/1225 [00:02<00:00,  479.23it/s]
 81%|████████▏ | Scoring GeneralizingEstimator : 996/1225 [00:02<00:00,  478.90it/s]
 83%|████████▎ | Scoring GeneralizingEstimator : 1012/1225 [00:02<00:00,  478.64it/s]
 84%|████████▍ | Scoring GeneralizingEstimator : 1028/1225 [00:02<00:00,  478.41it/s]
 85%|████████▌ | Scoring GeneralizingEstimator : 1044/1225 [00:02<00:00,  478.15it/s]
 87%|████████▋ | Scoring GeneralizingEstimator : 1060/1225 [00:02<00:00,  477.85it/s]
 88%|████████▊ | Scoring GeneralizingEstimator : 1075/1225 [00:02<00:00,  475.87it/s]
 89%|████████▉ | Scoring GeneralizingEstimator : 1092/1225 [00:02<00:00,  476.62it/s]
 91%|█████████ | Scoring GeneralizingEstimator : 1109/1225 [00:02<00:00,  477.76it/s]
 92%|█████████▏| Scoring GeneralizingEstimator : 1125/1225 [00:02<00:00,  477.02it/s]
 93%|█████████▎| Scoring GeneralizingEstimator : 1140/1225 [00:02<00:00,  475.26it/s]
 94%|█████████▍| Scoring GeneralizingEstimator : 1157/1225 [00:02<00:00,  476.39it/s]
 96%|█████████▌| Scoring GeneralizingEstimator : 1173/1225 [00:02<00:00,  475.67it/s]
 97%|█████████▋| Scoring GeneralizingEstimator : 1190/1225 [00:02<00:00,  477.06it/s]
 98%|█████████▊| Scoring GeneralizingEstimator : 1202/1225 [00:02<00:00,  470.86it/s]
 99%|█████████▉| Scoring GeneralizingEstimator : 1212/1225 [00:02<00:00,  461.82it/s]
100%|██████████| Scoring GeneralizingEstimator : 1225/1225 [00:02<00:00,  460.88it/s]
100%|██████████| Scoring GeneralizingEstimator : 1225/1225 [00:02<00:00,  474.67it/s]

Plot

fig, ax = plt.subplots(layout="constrained")
im = ax.matshow(
    scores,
    vmin=0,
    vmax=1.0,
    cmap="RdBu_r",
    origin="lower",
    extent=epochs.times[[0, -1, 0, -1]],
)
ax.axhline(0.0, color="k")
ax.axvline(0.0, color="k")
ax.xaxis.set_ticks_position("bottom")
ax.set_xlabel(
    'Condition: "Right"\nTesting Time (s)',
)
ax.set_ylabel('Condition: "Left"\nTraining Time (s)')
ax.set_title("Generalization across time and condition", fontweight="bold")
fig.colorbar(im, ax=ax, label="Performance (ROC AUC)")
plt.show()
Generalization across time and condition

References#

Total running time of the script: (0 minutes 7.343 seconds)

Estimated memory usage: 175 MB

Gallery generated by Sphinx-Gallery