Decoding sensor space data with generalization across time and conditions#

This example runs the analysis described in [1]. It illustrates how one can fit a linear classifier to identify a discriminatory topography at a given time instant and subsequently assess whether this linear model can accurately predict all of the time samples of a second set of conditions.

# Authors: Jean-Remi King <jeanremi.king@gmail.com>
#          Alexandre Gramfort <alexandre.gramfort@inria.fr>
#          Denis Engemann <denis.engemann@gmail.com>
#
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import matplotlib.pyplot as plt
from sklearn.linear_model import LogisticRegression
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler

import mne
from mne.datasets import sample
from mne.decoding import GeneralizingEstimator

print(__doc__)

# Preprocess data
data_path = sample.data_path()
# Load and filter data, set up epochs
meg_path = data_path / "MEG" / "sample"
raw_fname = meg_path / "sample_audvis_filt-0-40_raw.fif"
events_fname = meg_path / "sample_audvis_filt-0-40_raw-eve.fif"
raw = mne.io.read_raw_fif(raw_fname, preload=True)
picks = mne.pick_types(raw.info, meg=True, exclude="bads")  # Pick MEG channels
raw.filter(1.0, 30.0, fir_design="firwin")  # Band pass filtering signals
events = mne.read_events(events_fname)
event_id = {
    "Auditory/Left": 1,
    "Auditory/Right": 2,
    "Visual/Left": 3,
    "Visual/Right": 4,
}
tmin = -0.050
tmax = 0.400
# decimate to make the example faster to run, but then use verbose='error' in
# the Epochs constructor to suppress warning about decimation causing aliasing
decim = 2
epochs = mne.Epochs(
    raw,
    events,
    event_id=event_id,
    tmin=tmin,
    tmax=tmax,
    proj=True,
    picks=picks,
    baseline=None,
    preload=True,
    reject=dict(mag=5e-12),
    decim=decim,
    verbose="error",
)
Opening raw data file /home/circleci/mne_data/MNE-sample-data/MEG/sample/sample_audvis_filt-0-40_raw.fif...
    Read a total of 4 projection items:
        PCA-v1 (1 x 102)  idle
        PCA-v2 (1 x 102)  idle
        PCA-v3 (1 x 102)  idle
        Average EEG reference (1 x 60)  idle
    Range : 6450 ... 48149 =     42.956 ...   320.665 secs
Ready.
Reading 0 ... 41699  =      0.000 ...   277.709 secs...
Filtering raw data in 1 contiguous segment
Setting up band-pass filter from 1 - 30 Hz

FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 1.00
- Lower transition bandwidth: 1.00 Hz (-6 dB cutoff frequency: 0.50 Hz)
- Upper passband edge: 30.00 Hz
- Upper transition bandwidth: 7.50 Hz (-6 dB cutoff frequency: 33.75 Hz)
- Filter length: 497 samples (3.310 s)

[Parallel(n_jobs=1)]: Done  17 tasks      | elapsed:    0.0s
[Parallel(n_jobs=1)]: Done  71 tasks      | elapsed:    0.1s
[Parallel(n_jobs=1)]: Done 161 tasks      | elapsed:    0.3s
[Parallel(n_jobs=1)]: Done 287 tasks      | elapsed:    0.5s

We will train the classifier on all left visual vs auditory trials and test on all right visual vs auditory trials.

clf = make_pipeline(
    StandardScaler(),
    LogisticRegression(solver="liblinear"),  # liblinear is faster than lbfgs
)
time_gen = GeneralizingEstimator(clf, scoring="roc_auc", n_jobs=None, verbose=True)

# Fit classifiers on the epochs where the stimulus was presented to the left.
# Note that the experimental condition y indicates auditory or visual
time_gen.fit(X=epochs["Left"].get_data(copy=False), y=epochs["Left"].events[:, 2] > 2)
  0%|          | Fitting GeneralizingEstimator : 0/35 [00:00<?,       ?it/s]
  6%|▌         | Fitting GeneralizingEstimator : 2/35 [00:00<00:00,   57.58it/s]
 11%|█▏        | Fitting GeneralizingEstimator : 4/35 [00:00<00:00,   58.28it/s]
 17%|█▋        | Fitting GeneralizingEstimator : 6/35 [00:00<00:00,   58.62it/s]
 26%|██▌       | Fitting GeneralizingEstimator : 9/35 [00:00<00:00,   66.65it/s]
 34%|███▍      | Fitting GeneralizingEstimator : 12/35 [00:00<00:00,   71.49it/s]
 43%|████▎     | Fitting GeneralizingEstimator : 15/35 [00:00<00:00,   74.73it/s]
 51%|█████▏    | Fitting GeneralizingEstimator : 18/35 [00:00<00:00,   77.05it/s]
 60%|██████    | Fitting GeneralizingEstimator : 21/35 [00:00<00:00,   78.81it/s]
 69%|██████▊   | Fitting GeneralizingEstimator : 24/35 [00:00<00:00,   80.15it/s]
 77%|███████▋  | Fitting GeneralizingEstimator : 27/35 [00:00<00:00,   81.19it/s]
 83%|████████▎ | Fitting GeneralizingEstimator : 29/35 [00:00<00:00,   78.65it/s]
 91%|█████████▏| Fitting GeneralizingEstimator : 32/35 [00:00<00:00,   79.76it/s]
100%|██████████| Fitting GeneralizingEstimator : 35/35 [00:00<00:00,   81.34it/s]
100%|██████████| Fitting GeneralizingEstimator : 35/35 [00:00<00:00,   79.86it/s]

Score on the epochs where the stimulus was presented to the right.

scores = time_gen.score(
    X=epochs["Right"].get_data(copy=False), y=epochs["Right"].events[:, 2] > 2
)
  0%|          | Scoring GeneralizingEstimator : 0/1225 [00:00<?,       ?it/s]
  1%|          | Scoring GeneralizingEstimator : 12/1225 [00:00<00:03,  350.76it/s]
  2%|▏         | Scoring GeneralizingEstimator : 27/1225 [00:00<00:03,  397.61it/s]
  4%|▎         | Scoring GeneralizingEstimator : 43/1225 [00:00<00:02,  421.62it/s]
  5%|▍         | Scoring GeneralizingEstimator : 59/1225 [00:00<00:02,  434.94it/s]
  6%|▌         | Scoring GeneralizingEstimator : 75/1225 [00:00<00:02,  443.41it/s]
  7%|▋         | Scoring GeneralizingEstimator : 91/1225 [00:00<00:02,  448.66it/s]
  9%|▊         | Scoring GeneralizingEstimator : 107/1225 [00:00<00:02,  452.10it/s]
 10%|█         | Scoring GeneralizingEstimator : 123/1225 [00:00<00:02,  454.73it/s]
 11%|█▏        | Scoring GeneralizingEstimator : 139/1225 [00:00<00:02,  456.47it/s]
 13%|█▎        | Scoring GeneralizingEstimator : 155/1225 [00:00<00:02,  457.90it/s]
 14%|█▍        | Scoring GeneralizingEstimator : 171/1225 [00:00<00:02,  459.34it/s]
 15%|█▌        | Scoring GeneralizingEstimator : 187/1225 [00:00<00:02,  460.40it/s]
 17%|█▋        | Scoring GeneralizingEstimator : 203/1225 [00:00<00:02,  461.43it/s]
 18%|█▊        | Scoring GeneralizingEstimator : 219/1225 [00:00<00:02,  462.28it/s]
 19%|█▉        | Scoring GeneralizingEstimator : 235/1225 [00:00<00:02,  463.10it/s]
 21%|██        | Scoring GeneralizingEstimator : 252/1225 [00:00<00:02,  466.51it/s]
 22%|██▏       | Scoring GeneralizingEstimator : 268/1225 [00:00<00:02,  467.01it/s]
 23%|██▎       | Scoring GeneralizingEstimator : 284/1225 [00:00<00:02,  467.61it/s]
 25%|██▍       | Scoring GeneralizingEstimator : 301/1225 [00:00<00:01,  470.23it/s]
 26%|██▌       | Scoring GeneralizingEstimator : 317/1225 [00:00<00:01,  470.50it/s]
 27%|██▋       | Scoring GeneralizingEstimator : 333/1225 [00:00<00:01,  470.52it/s]
 29%|██▊       | Scoring GeneralizingEstimator : 350/1225 [00:00<00:01,  472.76it/s]
 30%|██▉       | Scoring GeneralizingEstimator : 366/1225 [00:00<00:01,  472.82it/s]
 31%|███▏      | Scoring GeneralizingEstimator : 383/1225 [00:00<00:01,  474.96it/s]
 33%|███▎      | Scoring GeneralizingEstimator : 399/1225 [00:00<00:01,  474.91it/s]
 34%|███▍      | Scoring GeneralizingEstimator : 416/1225 [00:00<00:01,  476.85it/s]
 35%|███▌      | Scoring GeneralizingEstimator : 432/1225 [00:00<00:01,  476.43it/s]
 37%|███▋      | Scoring GeneralizingEstimator : 449/1225 [00:00<00:01,  477.97it/s]
 38%|███▊      | Scoring GeneralizingEstimator : 466/1225 [00:00<00:01,  479.64it/s]
 39%|███▉      | Scoring GeneralizingEstimator : 482/1225 [00:01<00:01,  479.04it/s]
 41%|████      | Scoring GeneralizingEstimator : 499/1225 [00:01<00:01,  480.50it/s]
 42%|████▏     | Scoring GeneralizingEstimator : 516/1225 [00:01<00:01,  481.56it/s]
 43%|████▎     | Scoring GeneralizingEstimator : 532/1225 [00:01<00:01,  481.07it/s]
 45%|████▍     | Scoring GeneralizingEstimator : 549/1225 [00:01<00:01,  482.43it/s]
 46%|████▌     | Scoring GeneralizingEstimator : 566/1225 [00:01<00:01,  483.70it/s]
 48%|████▊     | Scoring GeneralizingEstimator : 583/1225 [00:01<00:01,  484.60it/s]
 49%|████▉     | Scoring GeneralizingEstimator : 599/1225 [00:01<00:01,  483.83it/s]
 50%|█████     | Scoring GeneralizingEstimator : 616/1225 [00:01<00:01,  484.92it/s]
 52%|█████▏    | Scoring GeneralizingEstimator : 632/1225 [00:01<00:01,  484.32it/s]
 53%|█████▎    | Scoring GeneralizingEstimator : 649/1225 [00:01<00:01,  485.16it/s]
 54%|█████▍    | Scoring GeneralizingEstimator : 666/1225 [00:01<00:01,  486.23it/s]
 56%|█████▌    | Scoring GeneralizingEstimator : 683/1225 [00:01<00:01,  487.02it/s]
 57%|█████▋    | Scoring GeneralizingEstimator : 699/1225 [00:01<00:01,  486.24it/s]
 58%|█████▊    | Scoring GeneralizingEstimator : 716/1225 [00:01<00:01,  487.19it/s]
 60%|█████▉    | Scoring GeneralizingEstimator : 732/1225 [00:01<00:01,  486.42it/s]
 61%|██████    | Scoring GeneralizingEstimator : 749/1225 [00:01<00:00,  487.33it/s]
 63%|██████▎   | Scoring GeneralizingEstimator : 766/1225 [00:01<00:00,  487.91it/s]
 64%|██████▍   | Scoring GeneralizingEstimator : 782/1225 [00:01<00:00,  487.09it/s]
 65%|██████▌   | Scoring GeneralizingEstimator : 799/1225 [00:01<00:00,  487.96it/s]
 67%|██████▋   | Scoring GeneralizingEstimator : 816/1225 [00:01<00:00,  488.41it/s]
 68%|██████▊   | Scoring GeneralizingEstimator : 832/1225 [00:01<00:00,  487.50it/s]
 69%|██████▉   | Scoring GeneralizingEstimator : 849/1225 [00:01<00:00,  488.24it/s]
 71%|███████   | Scoring GeneralizingEstimator : 865/1225 [00:01<00:00,  487.35it/s]
 72%|███████▏  | Scoring GeneralizingEstimator : 882/1225 [00:01<00:00,  488.21it/s]
 73%|███████▎  | Scoring GeneralizingEstimator : 899/1225 [00:01<00:00,  488.67it/s]
 75%|███████▍  | Scoring GeneralizingEstimator : 915/1225 [00:01<00:00,  487.86it/s]
 76%|███████▌  | Scoring GeneralizingEstimator : 932/1225 [00:01<00:00,  488.68it/s]
 77%|███████▋  | Scoring GeneralizingEstimator : 948/1225 [00:01<00:00,  487.73it/s]
 79%|███████▉  | Scoring GeneralizingEstimator : 965/1225 [00:02<00:00,  488.58it/s]
 80%|████████  | Scoring GeneralizingEstimator : 982/1225 [00:02<00:00,  489.07it/s]
 81%|████████▏ | Scoring GeneralizingEstimator : 998/1225 [00:02<00:00,  488.17it/s]
 83%|████████▎ | Scoring GeneralizingEstimator : 1015/1225 [00:02<00:00,  488.97it/s]
 84%|████████▍ | Scoring GeneralizingEstimator : 1032/1225 [00:02<00:00,  489.30it/s]
 86%|████████▌ | Scoring GeneralizingEstimator : 1048/1225 [00:02<00:00,  488.22it/s]
 87%|████████▋ | Scoring GeneralizingEstimator : 1065/1225 [00:02<00:00,  489.00it/s]
 88%|████████▊ | Scoring GeneralizingEstimator : 1081/1225 [00:02<00:00,  488.12it/s]
 90%|████████▉ | Scoring GeneralizingEstimator : 1098/1225 [00:02<00:00,  488.89it/s]
 91%|█████████ | Scoring GeneralizingEstimator : 1114/1225 [00:02<00:00,  487.97it/s]
 92%|█████████▏| Scoring GeneralizingEstimator : 1131/1225 [00:02<00:00,  488.72it/s]
 94%|█████████▎| Scoring GeneralizingEstimator : 1148/1225 [00:02<00:00,  489.03it/s]
 95%|█████████▌| Scoring GeneralizingEstimator : 1164/1225 [00:02<00:00,  488.17it/s]
 96%|█████████▋| Scoring GeneralizingEstimator : 1181/1225 [00:02<00:00,  488.96it/s]
 98%|█████████▊| Scoring GeneralizingEstimator : 1198/1225 [00:02<00:00,  489.57it/s]
 99%|█████████▉| Scoring GeneralizingEstimator : 1214/1225 [00:02<00:00,  488.72it/s]
100%|██████████| Scoring GeneralizingEstimator : 1225/1225 [00:02<00:00,  489.44it/s]
100%|██████████| Scoring GeneralizingEstimator : 1225/1225 [00:02<00:00,  483.58it/s]

Plot

fig, ax = plt.subplots(layout="constrained")
im = ax.matshow(
    scores,
    vmin=0,
    vmax=1.0,
    cmap="RdBu_r",
    origin="lower",
    extent=epochs.times[[0, -1, 0, -1]],
)
ax.axhline(0.0, color="k")
ax.axvline(0.0, color="k")
ax.xaxis.set_ticks_position("bottom")
ax.set_xlabel(
    'Condition: "Right"\nTesting Time (s)',
)
ax.set_ylabel('Condition: "Left"\nTraining Time (s)')
ax.set_title("Generalization across time and condition", fontweight="bold")
fig.colorbar(im, ax=ax, label="Performance (ROC AUC)")
plt.show()
Generalization across time and condition

References#

Total running time of the script: (0 minutes 7.222 seconds)

Estimated memory usage: 175 MB

Gallery generated by Sphinx-Gallery